
A Benchmark for Rough Sketch Cleanup

CHUAN YAN, George Mason University
DAVID VANDERHAEGHE, IRIT CNRS Université de Toulouse
YOTAM GINGOLD, George Mason University

vectorized

shape strokes

shading

scaffold

thresholdedoriginal

disance:
running-time:

0.00459
277

Poly Vector →
Stroke Aggregator

disance:
running-time:

0.00403
103

Topology Driven→
Stroke Aggregator

b) c)a)

d)

[Favreau et al. 2016]

disance:
running-time:

0.0031
155

Fidelity Simplicity

[Simo-Serra et al. 2018a]

disance:
running-time:

0.00345
5

Mastering Sketching

[Bessmeltsev and Solomon 2019]

disance:
running-time:

0.00253
50

Poly Vector

[Liu et al. 2018]

disance:
running-time:

0.00427
793

Stroke Aggregator

[Noris et al. 2013]

disance:
running-time:

0.00321
15

Topology Driven

[Parakkat et al.. 2018]

disance:
running-time:

0.00357
1

Delaunay
Triangulation

[Simo-Serra et al. 2018b]

disance:
running-time:

0.00391
2

Real-Time Inking

Fig. 1. Our dataset consists of rough sketches (a, top) collected from the wild along with redundantly cleaned versions by professionals (a, bottom). Each
sketch is manually vectorized into shape and auxiliary layers (b) and professionally cleaned by multiple artists to create a ground truth (c). We use our dataset
to evaluate state-of-the-art rough sketch cleanup algorithms and identify open problems (d). Pipe image © Patrick Murphy CC-BY-2.0.

Sketching is a foundational step in the design process. Decades of sketch
processing research have produced algorithms for 3D shape interpretation,
beautification, animation generation, colorization, etc. However, there is a
mismatch between sketches created in the wild and the clean, sketch-like
input required by these algorithms, preventing their adoption in practice.
The recent flurry of sketch vectorization, simplification, and cleanup algo-
rithms could be used to bridge this gap. However, they differ wildly in the
assumptions they make on the input and output sketches. We present the
first benchmark to evaluate and focus sketch cleanup research. Our dataset
consists of 281 sketches obtained in the wild and a curated subset of 101
sketches. For this curated subset along with 40 sketches from previous work,
we commissioned manual vectorizations and multiple ground truth cleaned
versions by professional artists. The sketches span artistic and technical
categories and were created by a variety of artists with different styles. Most
sketches have Creative Commons licenses; the rest permit academic use. Our
benchmark’s metrics measure the similarity of automatically cleaned rough
sketches to artist-created ground truth; the ambiguity and messiness of
rough sketches; and low-level properties of the output parameterized curves.

Authors’ addresses: Chuan Yan, cyan3@gmu.edu, George Mason University; David
Vanderhaeghe, vdh@irit.fr, IRIT CNRS Université de Toulouse; Yotam Gingold, George
Mason University, ygingold@gmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/12-ART163 $15.00
https://doi.org/10.1145/3414685.3417784

Our evaluation identifies shortcomings among state-of-the-art cleanup algo-
rithms and discusses open problems for future research.

CCS Concepts: • Computing methodologies� Image processing;
Graphics systems and interfaces; Shape analysis; • Applied comput-
ing� Computer-aided design.

Additional Key Words and Phrases: sketch, drawing, design, cleanup,
beautification, dataset, benchmark

ACM Reference Format:
Chuan Yan, David Vanderhaeghe, and YotamGingold. 2020. A Benchmark for
Rough Sketch Cleanup.ACMTrans. Graph. 39, 6, Article 163 (December 2020),
14 pages. https://doi.org/10.1145/3414685.3417784

1 INTRODUCTION
Sketching is a foundational step in the design process. The design
funnel [Kriebel 2017; Newman 2002] begins with broad latitude
for idea generation. As the funnel narrows, ideas are refined and
evaluated, until a finished artifact emerges. Sketches can be created
quickly and inexpensively, but play only an indirect, inspirational
role in later design stages of the design process. In contrast, the later
stages are time-consuming, tedious, and costly.

Decades of research into sketch processing have produced a large
literature of algorithms for tasks such as 3D inference [Andre and
Saito 2011; Bessmeltsev et al. 2015; Kaplan and Cohen 2006; Lipson
and Shpitalni 1996; Shao et al. 2012, 2013; Shtof et al. 2013; Xu et al.
2014; Zheng et al. 2016], UI design [Landay and Myers 1995], and
in-between animation [Whited et al. 2010; Yang et al. 2018]. These
research works remain underused in practice since they typically

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

https://www.flickr.com/photos/pmurf/
https://doi.org/10.1145/3414685.3417784
https://doi.org/10.1145/3414685.3417784

163:2 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

expect clean, sketch-like input rather than the rough, messy sketches
found in the wild.
Algorithms for vectorization, rough sketch cleanup, and simpli-

fication have the potential to bridge this gap, by vectorizing and
cleaning rough sketches for further algorithmic processing. Such
algorithms have been explored in the past [Barla et al. 2005; Or-
bay and Kara 2011]. In the last five years, there has been a flurry
of work [Bessmeltsev and Solomon 2019; Favreau et al. 2016; Liu
et al. 2018, 2015; Noris et al. 2013; Parakkat et al. 2018; Simo-Serra
et al. 2018a,b]. These works differ substantially in the assumptions
they make on the input and output sketches. Some take vectorized
input (parametric curves), some take raster input with clean back-
grounds, and some take raster input with no explicit restrictions on
the background e.g. paper texture. Most output parametric curves,
some output in raster form. Most do not consider shading or texture
strokes. As ground truth cleaned sketches are unavailable, each
approach demonstrates its output on a small set of ad-hoc exam-
ples.1 This presents two problems: (1) The examples do not reflect
the variety of rough sketches found in the wild; and (2) comparing
approaches is difficult without a common dataset.

Contributions. We introduce a benchmark for rough sketch clean-
up, with the goal of bridging the gap between sketches in the wild
and sketch-processing algorithms (Figure 1):

• A collection of 281 sketches gathered from the wild. The
sketches cover a diverse set of intended uses and styles. The
vast majority of rough sketches have Creative Commons li-
censes allowing derivative works and commercial uses; the
remaining 18 sketches come with explicit permission for aca-
demic use.

• A curated subset of 101 sketches along with 40 sketches
from previous work which we professionally vectorized and
cleaned. The cleaned sketches form a ground truth for sketch
cleanup. Each sketch was cleaned by 3–5 artists. The curated
sketches have a balanced distribution of uses and styles. We
professionally vectorized the rough sketches for algorithms
which require vectorized input. We commissioned a total of
526 professional derivative works (vectorizations and clean-
ings).

• Computational metrics for evaluating sketch cleanup algo-
rithms and analyzing properties of our dataset. Our met-
rics evaluate the similarity of automatically cleaned rough
sketches to artist-created ground truth; the ambiguity and
messiness of rough sketches; and low-level properties of the
output parameterized curves.

• An analysis of the cleanup performance of seven recent al-
gorithms and two pipelines composed of a vectorization fol-
lowed by a cleanup algorithm.

• A clear problem statement that identifies desiderata for down-
stream applications, characteristics of sketches found in the
wild, and open challenges.

1See Figures 4, 7, and 8 for examples from StrokeAggregator [Liu et al. 2018] marked
©Enrique Rosales. See Figure 10 for examples from Favreau et al. [2016]. See Figure
15 (a,f) for examples from Liu et al. [2015]. Additional examples can be seen in the
supplemental materials.

Our benchmark assesses the state of algorithmic sketch cleanup,
provides directions for future research, and will directly benefit
data-driven cleanup algorithms. Future algorithms capable of clean-
ing our benchmark may bridge the gap between real-world design
processes and decades of sketch-processing algorithms.

2 RELATED WORK
Rough sketch cleanup/line drawing simplification. Barla et al. [2005]

were the first to present an algorithm for line drawing simplification,
in which a complex, vector graphic drawing is “redrawn” with fewer
strokes. They do this by clustering strokes and then replacing each
cluster with a single representative curve. Numerous later works
have been proposed following this same basic cluster-and-replace
framework for vector graphics [Liu et al. 2018, 2015, 2019; Ogawa
et al. 2016; Orbay and Kara 2011; Shesh and Chen 2008]. Another line
of work simultaneously vectorizes and simplifies a raster image of a
sketch [Bessmeltsev and Solomon 2019; Donati et al. 2019; Favreau
et al. 2016; Kim et al. 2018; Noris et al. 2013; Parakkat et al. 2018].
This is a more challenging problem, as parametric data is unavailable
for the input curves. Recently, Simo-Serra et al. introduced a series
of data-driven rough sketch cleanup approaches using convolutional
neural networks [Simo-Serra et al. 2018a,b, 2016]. Unlike the other
approaches, Simo-Serra et al.’s work outputs a raster sketch rather
than a parametric vector graphic. This area has received substantial
interest in recent years; 12 of 16 of these works were published in
the last five years.

Datasets. The data-driven approaches by Simo-Serra et al. [2018a;
2018b; 2016] use a dataset that was created in reverse: artists created
rough sketches for existing clean sketches. This approach does not
capture rough sketches found in the wild, particularly the ambigu-
ity that can exist and lead to differing clean interpretations. This
dataset is purely raster-based, yet downstream sketch-processing
algorithms require parametric curves (vector graphics). In contrast,
our dataset was created in the natural direction, by cleaning rough
sketches found in the wild. Our dataset is also available as vector
graphics.

The OpenSketch dataset [Gryaditskaya et al. 2019] contains prod-
uct design sketches of 12 carefully chosen objects drawn in a con-
trolled environment in order to capture parametric strokes with
time accuracy. The drawings are all rough, not clean. We did not
include them as rough sketches in our dataset, because they were
created in “domesticated” conditions. Our dataset is composed of
sketches in the wild—drawn in uncontrolled environments—in order
to capture the diversity of real-world practice.

The QuickDraw [Ha and Eck 2018], Eitz et al. [2012], and Sangkloy
et al. [2016] datasets contain a large quantity of novice sketches.
Since they are drawn by novices, the sketches do not reflect the
complexity of sketches that many sketch-based algorithms intend
to process. The vast majority of sketches in our dataset were drawn
by skilled artists. The Manga109 [Matsui et al. 2017] and Danbooru
[Branwen 2019] datasets contain a large quantity of professional and
amateur manga-style drawings. The drawings are polished, unlike
the rough sketches in our dataset. Moreover, none of these datasets
contain pairs of rough and cleaned sketches.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

A Benchmark for Rough Sketch Cleanup • 163:3

Beautification. Algorithmic beautification applies aesthetic ideals
to an existing drawing. Pavlidis and Van Wyk [1985] introduced
this problem statement and an algorithm for beautifying figures
as a post-process. The idea of improving a geometric model with
aesthetic constraints dates back to Sketchpad [Sutherland 1963].
Several approaches proposed to create clean hand-drawn sketches
by beautifying rough strokes on the fly during drawing [Bae et al.
2008; Fišer et al. 2016; Frisken 2008; Grimm and Joshi 2012; Igarashi
et al. 1998]. These approaches require artists to change their tools.
They cannot be applied as a post-process to an existing sketch.
In contrast, we focus on rough sketch cleanup as a post-process
that allows artists to continue drawing with their preferred tools.
Beautification of higher-level goals, such as straight lines, parallel or
perpendicular angles, and even spacing, may result in global changes
to a drawing and are out of scope for rough-sketch cleanup. High-
level beautification is a potential downstream sketch processing
application for cleaned sketches.

3 MOTIVATION
The motivation for our benchmark is to bridge the gap between
sketches created in the wild and input requirements for sketch
processing algorithms. Downstream sketch processing algorithms
include activities as straightforward as filling regions with color
and as complex as inferring 3D geometry. We design our problem
statement around this purpose. Unlike the “domestic” examples
often used in previous work, sketches in the wild are ecologically
valid. They were created by artists for their own needs and reflect
artists’ natural tools, environments, and purposes. This avoids many
sources of bias present when data is created or commissioned with
the intention of being suitable for an algorithm. As a result, they
can be used to cross-validate sketch processing algorithms.

Many recently proposed algorithms are relevant to this problem,
despite having differently stated goals. These algorithms variously
categorize themselves as vectorization (converting a raster image
into a vector representation, with complexity stemming from han-
dling ambiguities in the raster data), simplification (“in which a
smaller set of lines is created to represent the geometry of the origi-
nal lines” [Barla et al. 2005]), and cleanup or consolidation (cluster-
ing raw strokes into aggregate curves). A researcher or practitioner
is likely to consider any of these approaches when seeking to solve
the bridging problem.

Downstream sketch processing algorithms typically expect sketch-
like input in the form of clean, parametric curves rather than raster
images. Curves should meet precisely at junctions. Regions should
be watertight. A continuous curve should not be stored as multi-
ple independent, shorter curves. See, for example, Figure 2. These
properties are often assumed by downstream sketch processing
applications, or else they spend considerable effort relaxing this as-
sumption. 2D-to-3D lifting algorithms often assume that continuity
and junctions in the 2D artwork imply continuity and junctions
in the 3D shape [Andre and Saito 2011; Bessmeltsev et al. 2015;
Kaplan and Cohen 2006; Lipson and Shpitalni 1996; Xu et al. 2014;
Zheng et al. 2016]. In-betweening algorithms similarly assume that
continuity and junctions should be preserved during interpolation
[Whited et al. 2010; Yang et al. 2018]. Filling a region with color may

scaffold lines global
tilt

paper texture

redundant,
loose and

messy

shading

texture

ambiguous
without global

context

global
asymmetry

Ro
ug

h
Cl

ea
ne

d
Fig. 2. Top: Example rough sketches in the wild. Sketches in the wild are
typically raster and contain redundant, loose, and messy strokes; strokes
which are not part of the shape of the object (e.g. shading, scaffold, tex-
ture); strokes which are ambiguous without global context; strokes varying
thickness and weight; paper texture; and global inaccuracies. Bottom: Pro-
fessionally cleaned sketches serve as ground truth for our dataset. Shape
strokes only are shown. Cleanup does not include correcting inaccuracies
with global effect, such as the tilted minarets or asymmetric domes. Animal
image ©AP CC-BY-SA-3.0, royal palace image ©Jinho Jung CC-BY-SA-2.0.

require watertightness, particularly if the boundary of the region is
composed of multiple disconnected curves.

3.1 Characteristics of sketches in the wild
Various characteristics of sketches in the wild distinguish them
from more straightforward or idealized examples often considered
in the literature. As shown in our evaluation (Section 5), these
characteristics present challenges and remain open problems for
rough sketch cleanup algorithms. See Figure 2 for illustrations.

Raster Format. Rough sketches in the wild are often stored in
raster form. Based on our experience collecting our dataset (Sec-
tion 4 File Formats) and a survey of 56 artists, designers more fre-
quently draw using raster-based software or scan their work from
the physical world. Ambiguities arise from repeated strokes, gaps,
and short overlapping strokes. Strokes often over- or undershoot
junctions. These ambiguities are exacerbated in raster input. When
scanned from the physical world, paper texture and environmental
lighting may be visible. See Figure 2 for labeled examples of rough
and cleaned sketches.

Varying thickness and weight. Artists often draw strokes with
varying thickness and weight. This is deliberate and contributes to
the aesthetic appeal of a sketch. Cleanup algorithms should consider
or preserve such properties, though it is rare that they do. (Barla
et al. [2005] is a notable exception.)

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

https://www.flickr.com/photos/phploveme/

163:4 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

Non-shape strokes. Several kinds of non-shape strokes or marks
appear in sketches in the wild:

• Shaded regions (which could be solid regions of color or
hatched) frequently occur. Shading can provide information
about lighting or surface normals.

• Texture is sometimes drawn, like stone or grass.
• Scaffold strokes or construction lines which are intermediate
strokes created to aid in drawing the final shape strokes. Scaf-
fold lines depict regular shapes (such as straight, parallel lines
or axis-aligned boxes) that can serve as global beautification
cues.

• Text annotations sometimes appear. We manually removed
text annotations from our dataset.

These are typically not expected by downstream algorithms. See
Figures 1–3 for examples from our dataset.

Physical artifacts. Paper texture and environmental lighting may
be present. This is often considered a separate pre-processing step
for algorothmic sketch clean-up. More attention should be paid
to this step. It is critical to robustly ignore them. Rough sketches
virtually always come in raster form (all of our dataset), either
scanned from the physical world (34% and 39% of our full and curated
datasets, respectively) or drawn in a raster graphics program (the
remainder). It strongly influences the quality of algorithmic cleanup.

Global context. Correctly interpreting a stroke in one part of a
shape may require global context. This is the case for a stroke which
is the continuation of a partially occluded stroke. This is also the
case for a stroke which has two local interpretations but clearly
forms part of a perceptual whole, such as the bottom hem of the
shirt in Figure 2.

Deliberately non-smooth strokes. Howmuch smoothing or straight-
ening should be applied to deliberately messy strokes? In some
architectural sketches in our dataset (e.g. Figure 2), the strokes have
a deliberately shaky appearance.

3.2 Problem Statement
We seek an algorithmic solution to rough sketch cleanup, in which
a sketch from the wild (in raster or vector format) is converted into
a neatened parametric vector graphics representation:

• Strokes that are loose and messy should be consolidated into
a single clean stroke. Redundant and errant strokes should
be removed.

• Strokes should meet precisely at junctions.
• Stroke thickness and color should be close to the original
sketch.

• Decorative strokes, such as shading and texture, should be
identified and treated separately.

• Scaffold or construction lines should be identified, separated,
and themselves cleaned.

• Cleanup should not add detail not present in the original
sketch or replace, for example, a hat in the input with a more
fashionable one (Figure 4). Every stroke in the output should
be a cleaner or neater version of strokes present in the input.

Due to ambiguities in a rough sketch, global context and high-
level perception may be required to correctly interpret a rough
stroke. However, rough sketch cleanup does not include operations
with global effect, like correcting inaccurate perspective, imperfect
ellipses, or adjusting the overall angle of a shape such as a leaning
tall building. Even small changes with global effect may require
warping the entire sketch.

Rough sketch cleanup can be easily performed by humans with a
few caveats. Ambiguous regions in a sketch will lead to inconsistent
cleanup. It is difficult for humans to create junctions with perfect
as opposed to visual precision. It is difficult for humans to match
stroke thickness and color.

4 DATASET
To evaluate and focus research into rough sketch cleanup, we gath-
ered a dataset of rough sketches obtained in the wild. Our dataset
consists of 281 sketches, from which we curated a subset of 101
sketches with a more even distribution of genre, style, and artist.
The curated subset is also a trade-off reflecting the manual effort in-
volved in ground truth creation. To curate the set, we independently
marked at most five sketches per artist to “definitely” include in the
subset and an unlimited number of additional sketches to include
“if needed.” By marking no more than five sketches per artist, we
prevented any artist from dominating their genre. Sketches deemed
less suitable were left unmarked. The curated subset consists of
those images which the majority marked as “definitely” and the
others marked as “if needed.”

4.1 Sketch Collection
We collected sketches by searching publicly available online sources
(e.g. Flickr, DeviantArt, forums, blogs, artist web pages) for Creative
Commons artwork, via direct outreach to personal and professional
contacts and indirect outreach by asking our contacts to distribute a
link to an online submission form, by scanning a book for which we
could obtain suitable permission, and by paying artists on UpWork
to license some of their existing drawings under a Creative Com-
mons license. We sought sketches that were primarily line drawings,
not colorful or shaded. (We found it impossible to avoid shading
entirely, particularly among design sketches.) We sought sketches
that exhibited some amount of roughness. We sought sketches, not
novice doodles, reflecting some amount of expertise gained by delib-
erate practice. We provide a web interface for browsing and filtering
these sketches in our supplemental materials.

We also collected ground truth data for 40 sketches used in previ-
ous work. We do not count these 40 in our dataset, as they are not
from the wild. Moreover, they are copyrighted by the artist or jour-
nal with all rights reserved. In contrast, the sketches in our dataset
have licenses allowing their use (nearly all Creative Commons; see
License, below).

Genres. Sketches in our dataset are organized into two overall
categories, industrial and artistic. Industrial sketches are further
divided into the genres fashion, product, and architecture. Product
sketches are sometimes called CAD or concept sketches. Artistic
sketches are divided into the genres freeform and logo. Freeform
sketches include cartoons and drawings or illustrations not meant to

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

A Benchmark for Rough Sketch Cleanup • 163:5

artistic industrial
freeform logo architecture fashion design

cl
ea

ne
d

sh
ap

e
st

ro
ke

s
ve

ct
or

iz
ed

al
l s

tr
ok

es
th

re
sh

ol
de

d
or

ig
in

al

Fig. 3. A sample from our dataset for various categories. From top to bottom: rough sketches from the wild; thresholded raster sketches to remove the
background; manually vectorized rough sketches; professionally cleaned sketches (one of multiple), i.e. ground truth. From left to right: dog image ©Preston
Blair, running man image ©Graham Wilson CC-BY-4.0, girl image ©David Revoy CC-BY-4.0, girl image ©Anton Gulic CC-BY-4.0, logo image ©Jakub Steiner
CC-BY-SA 2.0, book logo image ©Anna A CC-BY-NC 2.0, architecture image ©Alexander Strugach under CC-BY-2.0, fashion image ©Myriam Lasserre
CC-BY-SA-4.0, camera image ©Akshay Sharma CC-BY-SA, shoe image ©Graham Wilson CC-BY-4.0.

satisfy technical constraints or an industrial application. Examples
of each can be found in Figure 3.We consider style to be synonymous
with authorship. Within each genre, we have 4–13 different authors.
See Table 1 for the distribution of authors and sketches in each
genre.

Tags. Sketches are tagged with the following information:
• Genre
• Author (name, preferred attribution, contact information)
• Where the drawing was obtained from
• License
• Has shading strokes
• Has scaffold lines
• Has texture strokes
• Background (clean or paper texture from a scanned drawing)
• Curated (professionally vectorized, cleaned, and evaluated)
• Ambiguity: degree to which cleanup artists agree
• Messiness: ratio of rough to clean stroke coverage

Table 1 summarizes the tag statistics for our dataset. Ambiguity
and Messiness are described in detail in Section 5.

License. The vast majority of sketches in our dataset have Cre-
ative Commons licenses: 94% of the full dataset and curated subset
(Table 1). We allow any Creative Commons license except those with
a “No Derivatives” clause, since any sketch-processing algorithm
creates a derivative work. The non-Creative Commons sketches
come with explicit permission from the rights holder for inclusion
in our benchmark. There are 18 such sketches in the full dataset
and 6 in the curated subset.

Table 1. Tag statistics for the 281 sketches in our entire dataset and 101
sketches in our curated subset. Other than the Authors column, the val-
ues represent the number of sketches with the property (license, presence
of layers, scanned from the physical world). Sketches without a Creative
Commons license (Not) are included in our dataset with explicit permission
from the copyright holder. All sketches are in raster format. Sketches with
a clean background were created in digital drawing software, rather than
scanned from the physical world.

Creative Commons Layers

Genre Sketches Authors BY BY-NC BY-NC-SA BY-SA Not Shading Scaffold Texture Physical

All 281 39 123 60 19 61 18 187 71 75 95
Art: Freeform 86 16 23 32 2 11 18 53 11 23 19
Art: Logo 29 6 18 4 0 7 0 28 0 2 7
Ind.: Architecture 26 6 7 0 10 9 0 12 10 13 15
Ind.: Fashion 40 4 1 22 5 12 0 17 0 16 22
Ind.: Product 100 8 74 2 2 22 0 77 50 21 32

Curated 101 35 48 15 8 24 6 76 35 24 39
Art: Freeform 33 13 11 8 2 6 6 30 6 8 7
Art: Logo 12 6 7 3 0 2 0 12 0 2 5
Ind.: Architecture 12 6 5 0 2 5 0 6 6 4 9
Ind.: Fashion 11 4 1 4 3 3 0 7 0 5 4
Ind.: Product 33 7 24 0 1 8 0 21 23 5 14

4.2 Ground Truth
We hired seven professional artists to create three ground truth
cleaned versions of each rough sketch2 in our curated subset and
in the additional 40 sketches used as examples in prior work. We
recruited the seven professional artists via UpWork. The artists
were located throughout the world (Argentina, China, Colombia,
Hungary, Russia, and Serbia). Artists had 5–9 years of professional
experience. The artists worked for a total of 645 hours (including
vectorization of rough input sketches). One of the artists cleaned
every image in our dataset and created the manual vectorizations.

We designed our problem statement to be algorithmically achiev-
able. However, we did not structure the creation of ground truth data

2Two sketches were cleaned by four artists.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

mailto:grahamw.design@gmail.com
https://www.davidrevoy.com/
https://www.flickr.com/photos/jakubsteiner/
https://www.flickr.com/photos/llamajing/
https://www.flickr.com/photos/alexander_str/
mailto:mylasserre@dlyr.fr
mailto:akshay@vt.edu
mailto:grahamw.design@gmail.com

163:6 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

Rough Invented Detail Accepted Clean

Rough Artist A Artist B Artist C

Fig. 4. Examples of cleanup, taken from our interactions with artists. Top:
The cleaning process should not add detail, as shown in the inset. Acceptable
cleaning should only revise strokes already present in the put. Bottom:
Ambiguities in the rough input sketch lead to multiple acceptable choices
by the cleanup artists. We discuss a metric for ambiguity in Section 5.5.
Koala image ©Enrique Rosales, aircarft image ©David Revoy CC-BY-4.0.

as a perceptual experiment. Sketch cleanup was a collaborative pro-
cess between the artists and us to decide what constituted cleanup
versus changing the idea of the original artist. Our goal was to obtain
cleaned sketches that reflect artists’ professional skills and human
perception without adding details or changing what is depicted. The
cleanup task is similar to the inking step in comic book creation
[Simo-Serra et al. 2018b], in which strokes are redrawn and refined.
However, when inking, artists may add details that improve the
drawing. We provided artists with illustrated instructions, including
positive and negative examples. We encouraged them to use their
best guess in case of ambiguity (Figure 4, bottom). The instructions
can be seen in our supplemental materials. Misinterpretations were
common (e.g. Figure 4, top). Without back-and-forth communica-
tion, we would have obtained poorer quality ground truth that no
algorithm could match. Structuring this as an experiment would
not have served the benchmark to structure ground truth data col-
lection as an experiment due to the highly skilled, time consuming,
and costly demands on our artists. Our initial instructions were
refined in collaboration with the artists. As ground truth creation
progressed and artists gained more experience, artists worked more
independently.

Artists created their cleaned vector drawings atop the input image,
which was given as a background layer in Adobe Illustrator.3 We
asked artists to preserve shading and texture and clean scaffolds in
their ground truth (in separate layers) for use in future research.
We found that professional artists have trouble creating topo-

logically accurate junctions. They were all able to create junctions
3All the artists we hired used Adobe Illustrator as their vector graphics editor. Artists
could trace over the rough sketch.

Table 2. Automatic rough sketch cleanup methods we evaluate.

Method Input Output

TopologyDriven [Noris et al. 2013] raster vector

FidelitySimplicity [Favreau et al. 2016] raster vector

DelaunayTriangulation [Parakkat et al. 2018] raster vector

PolyVector [Bessmeltsev and Solomon 2019] raster vector

StrokeAggregator [Liu et al. 2018] vector vector

MasteringSketching [Simo-Serra et al. 2018a] raster raster

RealTimeInking [Simo-Serra et al. 2018b] raster raster

TopologyDriven [Noris et al. 2013]→
StrokeAggregator [Liu et al. 2018] raster vector

PolyVector [Bessmeltsev and Solomon 2019]→
StrokeAggregator [Liu et al. 2018] raster vector

which appear closed (e.g. overlapping thick strokes), but only some
typically created shared stroke endpoints or endpoints ending on
other curves at machine precision. Common vector graphic formats
(Illustrator or SVG) cannot store topological junctions in complex
scenarios, such as when more than two curves share a junction or
when one curve starts or ends in the middle of another. An alterna-
tive data structure could solve this problem [Dalstein et al. 2014],
though it is not supported in common tools (e.g. Adobe Illustrator).
During cleanup, we asked artists to label strokes in different cat-
egories: shape strokes, shading, texture, and scaffolds. These are
stored in separate layers. The dataset also stores each layer as a
separate file to simplify future use.

Rough Sketch Vectorization. All of the 281 rough sketches are na-
tively in raster format, either because they were scanned from the
physical world or because they were created in a raster graphics
program. Some automatic algorithms take vector input, so we hired
one of the professional artists to create a faithful manual vectoriza-
tion of all 101 rough sketches in the curated subset. The artist traced
stroke centerlines where possible, and outlined shaded regions when
individual strokes were not distinguishable. These vectorized rough
sketches use a simple stroke style with constant thickness, since no
standard file format can store varying attributes like thickness, it is
difficult for a human to control, and thickness or color information
can be estimated from the raster image under each stroke. Just as
during ground truth cleanup, we asked the artist to place strokes
into different layers: shape strokes, shading, scaffolds, and texture.
The layers are stored as groups in an SVG file and, redundantly,
split into a separate SVG file per layer. The ground truth files and
manually vectorized rough input files are all provided in the same
coordinate system for evaluation.
We provide each input image in its original, raster, form; as a

raster image with a manually thresholded background to eliminate
physical artifacts like paper texture and illumination; and its manual
vectorization in SVG format (with layers as groups and as separate
files).

5 EVALUATION
We evaluated seven recent algorithms and two pipelines created
by composing two of the vectorization algorithms with a cleanup

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

https://www.davidrevoy.com/

A Benchmark for Rough Sketch Cleanup • 163:7

algorithm (Table 2). Four methods take raster input and produce
vector output by applying heuristic-based optimization: PolyVector
[Noris et al. 2013], FidelitySimplicity [Favreau et al. 2016], Topolo-
gyDriven [Bessmeltsev and Solomon 2019], and DelaunayTriangu-
lation [Parakkat et al. 2018]. One method, StrokeAggregator [Liu
et al. 2018], takes vector input and produces vector output by ap-
plying perceptual principles . Two data-driven approaches based
on convolutional neural networks, MasteringSketching [Simo-Serra
et al. 2018a] and its follow-up RealTimeInking [Simo-Serra et al.
2018b], take raster input and are the only two methods which pro-
duce raster output. We use the authors’ own implementations of
their algorithms. We also evaluated two pipelines: one of two self-
described vectorization algorithms, TopologyDriven [Noris et al.
2013] or PolyVector [Bessmeltsev and Solomon 2019], followed by
StrokeAggregator [Liu et al. 2018], the cleanup method that requires
vector input.

We provide a web interface for browsing algorithmic outputs
and interacting with some of our metrics. See our supplemental
materials.

Parameters. We evaluate algorithms using the authors’ recom-
mended or default parameters. The only approach with a user-facing
parameter is FidelitySimplicity [Favreau et al. 2016], which provides
users with a parameter (_ ∈ [0, 1]) to select the desired tradeoff
between fidelity (adherence to the rough input) and simplicity of
output curves. We evaluated it with multiple parameter settings
(_ = 0.25, 0.3, 0.5, 0.6, 0.75), which are the evenly spaced values (0.25,
0.5, 0.75) along with the values used by the authors for examples
shown in their paper (0.3, 0.6). We evaluated PolyVector [Bessmelt-
sev and Solomon 2019] with and without the “noisy” flag. The
parameters for DelaunayTriangulation [Parakkat et al. 2018] are
resolution dependent. We devised a simple formula to stay within
the authors’ recommended range. We set the “ len” parameter to
4% of the image diagonal, “skeleton pruning” to 3% of the image
diagonal, “smoothing” to 6% of the image diagonal or 100 (whichever
is larger), and “masking regions” to 40.

Input sketches. Weevaluated the algorithms on our curated dataset
as well as the 40 rough sketches gathered from prior work. We evalu-
ated three kinds of input derived from each rough sketch: the original
image, manually thresholded, and professionally vectorized (Figure 3).
The raster-based algorithms often expect clean backgrounds, so we
manually thresholded the original images to eliminate physical scan-
ning artifacts (paper texture and lighting). We also evaluated two
variants of the professional vectorization of each input image: all
layers and only shape strokes. All layers corresponds to a version
of the original image with a clean background and uniform stroke
width. By omitting non-shape strokes, we avoid stroke types that
most cleanup algorithms weren’t designed to handle.
The scale or resolution of the input is an overlooked parameter

for some algorithms, as algorithms may have internal thresholds
with resolution-dependent units or evaluate pixels within a sliding
window of fixed, absolute size (e.g. MasteringSketching [Simo-Serra
et al. 2018a]). To account for this, we evaluated raster images at
their original resolution, thresholded images at the same resolution
and resized to have 1000 and 500 pixels along their long edge, and
vectorized images rasterized at 1000- and 500-pixel dimensions. We

evaluate StrokeAggregator [Liu et al. 2018] only on the profession-
ally vectorized inputs (all layers and shape strokes only).

5.1 Sketch-to-Sketch Similarity
Much of our evaluation relies on measuring sketch-to-sketch simi-
larity. There are infinitely many different vector graphics representa-
tions for the same sketch. Consider, for example, that a Bézier curve
can be losslessly split into multiple, shorter curves. Two sketches
may look identical, but have different connectivity at T-junctions,
since SVGs and other common vector formats cannot represent
valence-3-or-higher junctions [Dalstein et al. 2014]. We investigated
algorithms to snap endpoints and T-junctions into a representa-
tion with richer topology. However, snapping endpoints affects the
body of the curve, potentially destroying T-junctions elsewhere. In
other places, curves run parallel to each other; after snapping, these
parts of the curve become double-covered. The issues that arise and
complexity of solutions begins to resemble sketch cleanup itself.
Therefore, we make the decision to evaluate the quality of vector
graphics representation (long, continuous versus short strokes, junc-
tions quality) independently from our evaluation of sketch-to-sketch
similarity (Section 5.3).
We do not need to consider registration or overall alignment.

Ground truth was created atop the rough sketch. The algorithms
we evaluate also similarly maintain the alignment of the output.

Since we have multiple ground truths for each sketch, we need
to compute the similarity of one sketch to a set of other sketches.
An algorithmic output could be similar to different ground truth
examples for different parts of the sketch. While we could measure
the distance from a point on the algorithmic output to any of the
ground truth examples, a similar adaption in the other direction
would require a correspondence between ground truths to deter-
mine whether every point on the ground truth was close to a point
on the algorithmically cleaned sketch. Unfortunately, finding cor-
respondences is an open research problem. We did not want our
evaluation to be subject to surprising correspondence problems.
Simpler metrics are more robust and easier to reason about. As a
result, we decided to use uncorresponded point-to-point similarity
to compare two images and use the maximum pairwise similarity
across all ground truth.

To compute point-to-point similarity, we compute a uniform sam-
pling of sketches in screen-space by rasterizing them. We normalize
each sketch to have uniform stroke thickness set to 0.1% of the
image’s long edge, rasterize it, and then threshold such that any
values darker than 75% are considered filled. This approximately
matches the thickness of the raster output of MasteringSketching
and RealTimeInking [Simo-Serra et al. 2018a,b] which we cannot
change and similarly threshold.
We want a symmetric similarity function. It is not enough to

measure how close e.g. each point on the algorithmic output is to
any point on the ground truth. A partial sketch should not have
equal similarity. (Table 3, “bottom.”)
We experimented with several point-to-point similarity and dis-

tance formula for comparing two binary images A and B: Intersec-
tion over Union (IOU), Hausdorff distance, F-score, and the Chamfer
distance, See Table 3 to see the behavior of these formula on simple

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

163:8 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

perfect nudged bottom dot dot only

Chamfer 0.00 0.01 0.06 0.002 0.60
F-score 0% 1.00 0.23 0.68 0.99 0.00
F-score 5% 1.00 1.00 0.73 0.99 0.00
Hausdorff 0.00 0.03 0.40 0.45 1.05
IOU 1.00 0.11 0.51 0.99 0.00

Table 3. The distance between a green and purple shape according to various
distance metrics, with overlap shown in black. The first column shows a
perfect match. Chamfer and Hausdorff are distances that count up from 0.
F-score and IOU values lie in the range 0 (completely dissimilar) to 1 (perfect
match). Nudging the perfect match shows that the IOU metric and F-score
are sensitive to slight misalignments, which is undesirable in our scenario.
The F-score can be tuned with a threshold parameter, though adjusting it
can be difficult (nudged vs. bottom). Adding a distant dot shows that the
Hausdorff distance is determined by outliers, which is also undesirable in our
scenario. The Chamfer distance handles all these scenarios appropriately,
and is the most distant when expected (dot only).

examples. The Intersection over Union (IOU), also called the Jaccard
index, measures the intersection between two regions (in our case,
the number of overlapping rasterized pixels), as a fraction of their
union (the union of rasterized pixels): |𝐴∩𝐵 |

|𝐴∪𝐵 | . Values range between
1 (perfect match) and 0. Unfortunately, the IOU is extremely sensi-
tive to local misalignments, as seen in Table 3, “nudged.” The other
distances can all be expressed efficiently by first computing the dis-
tance transform 𝐷𝑇 of each image, where 𝐷𝑇𝐴 is an image storing
the distance to the closest pixel in 𝐴 with distances normalized to
be fractions of the long edge. The Hausdorff distance computes the
“worst possible” closest distance between two sets:

Hausdorff(𝐴, 𝐵) = max(max𝑖, 𝑗 ∈𝐴 (𝐷𝑇𝐵 [𝑖, 𝑗]),max𝑖, 𝑗 ∈𝐵 (𝐷𝑇𝐴 [𝑖, 𝑗]))

A perfect match has distance 0. Two maximally dissimilar images
have a distance of

√
2 corresponding to the image diagonal. The

Hausdorff distance is dominated by the behavior of outliers, as seen
in Table 3, “dot.” This makes it a poor choice for us. The F-score
is the harmonic mean of precision and recall. Precision measures
the fraction of points of image A (e.g. an algorithm’s output) that
are within distance 𝑑 of any points of image B (e.g. a ground truth
sketch).

Precision(𝐴, 𝐵) = 1
|𝐴|

∑
𝑖, 𝑗 ∈𝐴

𝐷𝑇𝐵 [𝑖, 𝑗] < 𝑑

Recall measures the opposite direction. Values range between 1
(perfect match) and 0. The threshold 𝑑 must be carefully chosen,
as seen in Table 3, “nudged” and “bottom.” The Chamfer distance
measures the average closest distance between any point in A to
any point in B, and vice versa.

Chamfer(𝐴, 𝐵) = 1
2|𝐴|

∑
𝑖, 𝑗 ∈𝐴

𝐷𝑇𝐵 [𝑖, 𝑗] +
1

2|𝐵 |
∑
𝑖, 𝑗 ∈𝐵

𝐷𝑇𝐴 [𝑖, 𝑗]

Mean Chamfer distance per algorithm

DelaunayTriangulation

FidelitySimplicity

MasteringSketching

PolyVector

PolyVector
→StrokeAggregator

TopologyDriven
→StrokeAggregator

TopologyDriven

StrokeAggregator

RealTimeInking

Mean Chamfer distance per algorithm per variant

→ →

Fig. 5. Comparing algorithmic sketch cleanup to ground truth. Lower is
better. Above: For each rough sketch input to each algorithm, we average the
best (lowest) Chamfer distance among all variants of the image compared
to all ground truth cleanings of that image. Below: Broken down by image
variant and resolution.

The Chamfer distance has a similar range as the Hausdorff, (0 to√
2). The Chamfer distance is not sensitive to outliers and local

misalignments and has no parameters to tweak (Table 3).
For each rough sketch, we measured the similarity among its

ground truth cleanings with all metrics (Section 5.5). The Chamfer
distance had the best Pearson correlation score with the other dis-
tances. Due to its good theoretical properties and for lack of a better
alternative, we focus on the Chamfer distance for our evaluation.
Other distances can be browsed in our supplemental materials.
In all of our evaluations, we compare to only the shape strokes

layer of the ground truth output. No algorithms intentionally process
or preserve shading, scaffolding, or texture strokes. Future research
may make use of them.

5.2 How well do algorithmically cleaned rough sketches
match ground truth?

A central question we wish to answer is whether a given automatic
cleanup algorithm produces results similar to ground truth.

We computed distances for each image separately and use its best
score across all input variants (resolution and original, thresholded,
vectorized all layers, vectorized shape strokes only). This represents
a user willing to tweak parameters to obtain as high-quality an
output as possible.
Figure 5 shows the Chamfer distance for each algorithm on our

dataset. Figure 6 shows algorithmic output ranked by Chamfer
distance for three input sketches. We observe that all algorithms

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

A Benchmark for Rough Sketch Cleanup • 163:9

Original Ground Truth

Mastering

Sketching Stroke Aggregator Real-Time Inking Poly Vector

Poly Vector →

Stroke Aggregator Topology Driven

Topology Driven →

Stroke Aggregator

Delaunay

Triangulation Fidelity Simplicity

 0.00051 distance: 0.00052 distance: 0.00055 distance: 0.00066 distance: 0.00072 distance: 0.00078 distance: 0.00095 distance: 0.00228 distance: 0.00391distance:

Original Ground Truth
Mastering
Sketching Real-Time Inking Fidelity Simplicity Topology Driven Poly Vector

Poly Vector →
Stroke Aggregator

Delaunay
Triangulation

Topology Driven →
Stroke Aggregator Stroke Aggregator

distance: 0.00184 distance: 0.00197 distance: 0.00204 distance: 0.00216 distance: 0.00232 distance: 0.00244 distance: 0.00318 distance: 0.00337 distance: 0.00418

Original Ground Truth

Mastering

Sketching Real-Time Inking Poly Vector Topology Driven Stroke Aggregator

Poly Vector →

Stroke Aggregator

Topology Driven →

Stroke Aggregator Fidelity Simplicity

Delaunay

Triangulation

distance: 0.00083 distance: 0.0009 distance: 0.00094 distance: 0.001 distance: 0.00124 distance: 0.00203 distance: 0.00256 distance: 0.00351 distance: 0.00415

Fig. 6. Algorithmic cleanup output for three rough sketches, ranked according to Chamfer distance from ground truth, from better to worse (left to right).
Please see the supplemental material to interact with this data. From top to bottom: animal image ©Gregory Laufersweiler CC-BY-SA-3.0, cloth image ©Rachel
Bake CC-BY-NC-2.0, car image ©Jaguar MENA CC-BY-2.0.

Input 1000 px
Chamfer distance: 0.0019

500 px
Chamfer distance: 0.0015

M
asteringSketching

R
ealtim

eInking

1000 px
Chamfer distance: 0.0019

500 px
Chamfer distance: 0.0020

Original Size (1385 px)
Chamfer distance: 0.0020

Fig. 7. MasteringSketching and RealtimeInking (Simo-Serra et al. [2018a]
and [2018b], respectively) are techniques based on convolutional neural
networks (CNNs). The two algorithms consolidate repeated, rough strokes
with a different resolution dependence. MasteringSketching fails on the
image at its largest size. Penguin image ©Enrique Rosales.

performed better with 1000-pixel resolution images than 500-pixel
resolution images. This may be due to unconscious tuning by algo-
rithm designers. We also observe that manual thresholding nearly
always improved performance over the original images. We saw no

m
an

ua
lly

 c
lo

se
d

or
ig

in
al

Rough Input Fidelity vs Simplicity (λ = 0.5)

Chamfer distance: 0.032

Chamfer distance: 0.008

Fig. 8. Fidelity vs. Simplicity [Favreau et al. 2016] is sensitive to gaps in
the input strokes. Above: The input sketch contains gaps, so the output is
missing large regions. Below: We manually close the gaps, and the output
drastically improves. Pig image ©Enrique Rosales.

clear performance trend for algorithms based on the input sketch’s
genre.
We observed several characteristics of each cleanup algorithm.

The CNN-based approaches [Simo-Serra et al. 2018a,b] consolidate
repeated strokes with a resolution dependency (Figure 7). The reso-
lution at which they do this is different. FidelitySimplicity [Favreau

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

http://gregmrl.fr/
https://www.flickr.com/photos/rachel_bake/
https://www.flickr.com/photos/rachel_bake/
https://www.flickr.com/photos/jaguarcarsmena/

163:10 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

Rough Sketch Input len: 10
Chamfer distance: 0.0027

len: 2.5
Chamfer distance: 0.002

Fig. 9. The DelaunayTriangulation [Parakkat et al. 2018] method is sensitive
to the input parameters. It is difficult to find one set of parameters for all
sketches. Fashion image ©Hugo Fonseca CC-BY-NC-SA-3.0.

Rough Input PolyVector TopologyDriven Ground Truth

M
es

si
ne

ss
: 5

.5
M

es
si

ne
ss

: 1
.0

1

Fig. 10. The TopologyDriven [Noris et al. 2013] and PolyVector [Bessmeltsev
and Solomon 2019] approaches attempt a faithful vectorization and are
better suited to sketches with low messiness. Input images from Favreau
et al. [2016].

et al. 2016] performs poorly in the presence of gaps (Figure 8). Delau-
nayTriangulation [Parakkat et al. 2018] is sensitive to its input pa-
rameters (Figure 9). We chose parameters dynamically as a function
of the image long edge, but much better parameters can be found via
fine tuning. The vectorization approaches (TopologyDriven [Noris
et al. 2013] and PolyVector [Bessmeltsev and Solomon 2019]) in-
deed focus on faithful vectorization and do not group repeated
messy strokes (Figure 10). For that reason, they are better suited for
sketches with low messiness (Section 5.5).

5.3 Vector PathQuality
We measure two characteristics of the vector representation itself.
The two CNN-based methods we evaluate [Simo-Serra et al. 2018a,b]
cannot participate in this evaluation, because they output raster
images. The sketches created by human artists (ground truth and
manual vectorizations) can participate. We measured the arc length
of continuous paths represented in each algorithmic cleanup’s SVG

output. It is preferable to store a visually continuous curve as a single,
long path rather than multiple shorter ones placed end-to-end but
topologically disconnected. A downstream algorithm will likely
expect that separately stored paths in the SVG typically correspond
to visually separate paths. Statistics about path arc lengths for the
algorithms we evaluate can be seen in Figure 12. StrokeAggregator
[Liu et al. 2018] had far superior curves than the other algorithms, on
par with rough human sketches. The ground truth artists produced
paths whose arc lengths were typically many times longer than any
algorithmic output.
We also measured the quality of junctions between curve end-

points. SVG’s and other common vector graphics formats cannot
represent 3-way (or higher) junctions, so any T-junctions must nec-
essarily cause a discontinuity in how the paths are stored where
there is none visually. However, if the distance between the end-
point of a curve and all other curves is zero, then the junction is
stored in the best way possible. For this reason, and to correct for
short paths as described above, downstream applications often as-
sume that coincidence implies connectivity. We sum the minimum
distance between every curve endpoint and every other curve in
the SVG, normalized such that the image’s long edge has length 1.
Figure 11 plots statistics about the total minimum distance and the
number of endpoints whose minimum distance to another curve
was over 0.1% of the image’s long edge. We use the total minimum
distance rather than the average minimum distance, because that
would benefit algorithms that store long, visually continuous paths
as topologically disconnected short paths. StrokeAggregator [Liu
et al. 2018] also had the best performance in this metric, though
many algorithms created higher quality junctions than humans as
expected (Section 4.2).

5.4 Timing and Failure Rate
We measure the time each algorithm took to complete (Figure 13).
We also measure the fraction of rough sketches an algorithm was
able to successfully process. An algorithmwhich took longer than 30
minutes or more than 40GB or RAM was terminated and considered
as a failure. Running all algorithms for all inputs took 25 days of
CPU time. This does not count time taken when algorithms failed
to complete. Due to the intense computational requirements and
differing operating system requirements, we ran the algorithms on
several machines with different specifications. Machine A had an
Intel Core i7-6700 3.4 GHz CPU with 4 cores and 48 GB of RAM.
Machine B had an Intel Core i7-7700HQ 2.80 GHz CPU with 4 cores
and 16 GB of RAM. All algorithms except those mentioned below
ran on Machines A and B. In particular, any algorithms which failed
due to high memory use ran on Machine A. Machine C had an
Intel Core i5-5287U 2.90GHz CPU with 2 cores and 16 GB of RAM.
Machine C was used solely for DelaunayTriangulation [Parakkat
et al. 2018]. MasteringSketching and RealTimeInking [Simo-Serra
et al. 2018a,b] ran on remote GPU clusters for which we do not
have precise machine specifications. We did not run algorithms in
parallel, so that parallel algorithms could have uncontested access
to all CPU cores.
The CNN-based approaches [Simo-Serra et al. 2018a,b] were by

far the fastest to run, finishing in just a few seconds. Other methods

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

A Benchmark for Rough Sketch Cleanup • 163:11

1

2

3

4

5

6

7

8

To
ta

l m
in

im
um

 ju
nc

tio
n

di
st

an
ce

 p
er

 in
pu

t

Junction distances

0

DelaunayTriangulation

FidelitySimplicity

PolyVector2StrokeAggregator

PolyVector TopologyDriven2StrokeAggregator

StrokeAggregator TopologyDriven Rough GT

0

1000

2000

3000

4000

5000

6000

op

en
 e

nd
po

in
ts

 p
er

 in
pu

t

Open endpoint distribution

DelaunayTriangulation
FidelitySimplicity

PolyVector2StrokeAggregator

PolyVector TopologyDriven2StrokeAggregator

StrokeAggregator TopologyDriven GTRough

Fig. 11. Top: The minimum distance from a path’s endpoint to any other
path provides a simple way to measure gaps at junctions between paths.
Lower is better. We sum the minimum distance for all endpoints in a sketch
to estimate the openness of its curves. Algorithm performance is far better
than that of humans. Bottom: We count the number of open endpoints per
output. Lower is better. An open endpoint is defined as having a closest path
farther away than 0.1% of the image’s long edge.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
ar

c
le

ng
th

 p
er

 in
pu

t

Arc length distribution 3.1…

DelaunayTriangulation
FidelitySimplicity

PolyVector2StrokeAggregator

PolyVector TopologyDriven2StrokeAggregator

StrokeAggregator GTTopologyDriven Rough

Fig. 12. The average length of a topologically continuous path. Higher is
better. A visually continuous path should be stored as a long, continuous path
rather than as multiple shorter paths placed end-to-end but topologically
disconnected. We compare algorithm and human performance. Human
ground truth falls off the plot, as a handful of sketches have average arc
lengths distributed up to 3.1.

Se
co
nd

s

1000

400

300

200

100

0

500

600

700

900

800

Running Time

DelaunayTriangulation

FidelitySimplicity

MasteringSketching

PolyVector

PolyVector
→StrokeAggregator

TopologyDriven
→StrokeAggregator

TopologyDriven

StrokeAggregator

RealTimeInking

Fig. 13. Average running time in seconds for each genre of input. Logos
tend to be simpler and hence run faster. The pipelines were built atop the
output of PolyVector and TopologyDriven; the dashed regions correspond
to this first stage.

took between a minute or two (DelaunayTriangulation [Parakkat
et al. 2018]) and over tenminutes (StrokeAggregator [Liu et al. 2018]).
Logos are the simplest sketches in our dataset and took the least
time to run.

We measured the strict and overall failure rate of each algorithm
(Figure 14). An algorithm failed if it did not produce output for a
rough sketch across all (overall) or any (strict) tested algorithm pa-
rameters and image variants, within our time and memory bounds.
RealTimeInking [Simo-Serra et al. 2018b] was the only method
which never failed. The other CNN-based method (MasteringSketch-
ing [Simo-Serra et al. 2018a]) failed for images whose resolution
was over 8002. StrokeAggregator [Liu et al. 2018] had the highest
failure rate, though it has the fewest chances to succeed since there
are only two vector variants for each rough sketch. It was the only
algorithm to have any overall failures. All other algorithms were
able to produce some output for some image variant or resolution.
When run as a pipeline atop the algorithms PolyVector [Bessmeltsev
and Solomon 2019] and TopologyDriven [Noris et al. 2013], their
failure rates decrease.

5.5 Ambiguity and Messiness
How ambiguous is a rough sketch? A given rough sketch may be

more or less ambiguous. Our multiple ground truth cleanings of
each sketch allow provide us with data to obtain such a measure-
ment. We define the ambiguity of a rough sketch as the average
pairwise distance between all ground truth cleanings. As with all
of our evaluations, we compute ambiguity using only the shape
strokes layer of the ground truth. Examples of ambiguity can be
seen in Figure 15. See the supplemental materials for per-sketch
ambiguity. Ambiguity may be caused by densely repeated strokes,
gaps in a stroke, or semantic ambiguity (when context changes the
interpretation of strokes). Ambiguity may also be due to different
high-level decisions about the cleanup process, such as whether a
stroke is scaffold, shading, or texture versus a shape stroke, and
whether to apply some amount of global beautification.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

163:12 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

10

20

30

40 39%

50

Strict Failure Rate

Pe
rc
en

t

60

70

80

90

100

0
0.7%0%0%0%0% 0% 0%

11%

X% overall failure rate

DelaunayTriangulation

FidelitySimplicity

MasteringSketching

PolyVector

PolyVector
→StrokeAggregator

TopologyDriven
→StrokeAggregator

TopologyDriven

StrokeAggregator

RealTimeInking

Fig. 14. Failure rates for the algorithms. An algorithm was considered to
have failed if it did not produce output within 30 minutes and 40 GB of RAM
across all (strict failure rate) or any (overall failure rate) parameter settings,
image variants, and resolutions. The overall failure rate for all algorithms
except StrokeAggregator and its pipelines was 0%.

Messiness. A messier sketch has more strokes or markings that
are removed during cleanup than a less messy sketch. Figure 15
depicts several examples. We define a rough sketch’s messiness
as the ratio of covered area removed during cleanup. Messiness
compares all layers of the input image, since that is how it is given,
to the shape strokes of the ground truth, since that is the desired
output. Practically, we compute this as the ratio of the number of
pixels in all layers of the vectorized rough sketch S to the average
number of pixels in the shape strokes of each ground truth G𝑖 . Using
the vectorized input avoids physical artifacts.

Messiness(S, {G𝑖 }) =
#pixels(S)

average({#pixels(G𝑖)})

fashion
architecture

logo
freeform

product
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0
The average messiness per genre can be
seen inset right. Messiness for individ-
ual sketches varies from approximately
one to ten depending on an artist’s style.
Messiness also varies by category. Prod-
uct sketches tend to have more scaf-
fold lines and shadows while the fashion
sketches we collected are closer to their
cleaned versions. See the supplemental
materials for per sketch messiness. High
ambiguity typically corresponds to high
messiness, but the opposite is not always
true (Figure 15-g).

5.6 Perceptual Study
We performed a pilot perceptual study with naive subjects on Ama-
zon Mechanical Turk. We summarized our problem statement (Sec-
tion 3) and asked subjects to “mark the degree to which each of
the following drawings is a high-quality neatened version of the
above rough drawing” with a 5-point Likert scale. We performed the

experiment with two rough sketches, one freeform and one archi-
tectural, for which all cleanup algorithms, including the pipelines,
succeeded. For each rough sketch we obtained ratings from 𝑁 = 20
subjects for all nine algorithmic outputs and the three professional
artists’ ground truth outputs. The (twelve) neatened drawings were
arranged in randomized order in a 3 × 4 gallery. The perceptual
study itself (what subjects saw, the ratings for each output, and
analysis) can be seen in the supplemental materials.
Our pilot study obtained inconsistent results. The Chamfer dis-

tance was highly correlated with mean Likert scores for the architec-
ture input (Pearson’s 𝑟 = −0.87, 𝑝 = 0.0002)—more so than all other
metrics except F-score with a particular threshold. The Chamfer dis-
tance was not as highly correlated for the freeform image (𝑟 = −0.33,
𝑝 = 0.30), and was less correlated than other metrics. We discuss a
confounding factor below. Tukey’s Honestly Significant Difference
(HSD) test determined that, for each of the two inputs, some neat-
ened drawings received significantly different mean Likert scores
from others. However, a Wilcoxon signed-rank test determined that
the ranking of each neatener (algorithm or artist) was significantly
different (inconsistent) between the two inputs (𝑝 = 0.18). Rank-
ings were based on mean Likert scores. Anecdotally, subjects rated
the output of MasteringSketching [Simo-Serra et al. 2018a] highly
for both inputs (ranked best or second-best). It was rated above
all-but-one ground truth and the follow-up work by the same au-
thors [Simo-Serra et al. 2018b]. There may be a confounding factor:
MasteringSketching [Simo-Serra et al. 2018a] output thicker lines
than the other approaches, including its follow-up work. Since those
two approaches output raster images, we cannot simply normalize
the line thickness as we can for SVG output. Excluding the Likert
scores of MasteringSketching [Simo-Serra et al. 2018a], the Cham-
fer distance’s correlation with human ratings increases. It becomes
the most highly correlated metric for both the architectural input
(𝑟 = −0.90, 𝑝 = 0.0001) and freeform input (𝑟 = −0.56, 𝑝 = 0.07).

The above analysis is based on a small sample (two example
sketches and twenty ratings per output). It may be that scaling our
study up to large numbers of subjects and inputs would produce
consistent, significant results. However, to conduct a successful per-
ceptual study, it may be that subjects with expertise or additional
training or more focused questions are required. For example, Xu
et al. [2019] asked subjects to rate the aesthetics, conformity, and
tidiness separately. A two-alternative forced choice (2AFC) experi-
ment may be able to determine whether outputs are significantly
different with fewer queries.

6 CONCLUSION
Rough sketch cleanup has the potential to bridge the gap between
sketches made in practice and a large literature of sketch processing
algorithms. To succeed, cleanup algorithm must be able to process
sketches as they are in the wild. We introduced a dataset which
reflects the variety and reality of sketches in the wild. The accompa-
nying professionally vectorized and cleaned derivatives we acquired
identify weaknesses and open problems with existing cleanup al-
gorithms, and provide future research a scaffold for progress. Our
ground truth similarity metric serves as a benchmark challenge. Au-
tomatic algorithms should aim to produce results as close to ground

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

A Benchmark for Rough Sketch Cleanup • 163:13

Medium Ambiguity (0.003)
Medium Messiness (3.77)

a) High Ambiguity (0.004)
High Messiness (5.18)

b)

High Ambiguity (0.005)
High Messiness (9.36)

e)

Low Ambiguity (0.0002)
Low Messiness (1.21)

c) High Ambiguity (0.009)
High Messiness (5.11)

d)

High Ambiguity (0.006)
Low Messiness (1.57)

) Low Ambiguity (0.001)
High Messiness (4.67)

g) Low Ambiguity (0.0003)
Low Messiness (1.36)

h)

Fig. 15. Ambiguity versus Messiness. Ambiguity may be due to thick regions of repeated strokes (a, b), gaps (c), or semantic ambiguity (d). Ambiguity may
also be due to different decisions regarding the cleanup process, such as which strokes are scaffold/shading/texture versus shape strokes (b), whether occluded
contours should be kept (e), or whether to apply global beautification (f). All but global beautification correspond to higher messiness. Some messy drawings
have low ambiguity (g). In the absence of global beautification, drawings with low messiness typically have low ambiguity (h). Author/copyright information
for the sketches: a and f) from Liu et al. [2015], b) Patrick Murphy, CC-BY-2.0. c) Maria Fiddler, CC-BY-NC-SA-4.0. d) Trip Ivey, CC-BY-4.0. e) Akshay Sharma,
CC-BY-SA. g) Alexander Strugach, CC-BY-2.0. h) Preston Blair, explicit permission.

Rough Iterated Our Ground Truth

Fig. 16. A comparison of the original artist’s iteration on their (thresholded)
rough sketch and one of the ground truth cleaned versions created by an
independent professional for our dataset (shape strokes only). Top row rough
and iterated images © Anastasia Majzhegisheva CC-BY-4.0. Bottom row
rough and iterated images © Jinho Jung CC-BY-SA-2.0.

truth as the multiple ground truth images are to each other. We
plan to publish our evaluation scripts, providing future researchers
a simple way to automatically evaluate their algorithms on our
benchmark.

Limitations and Future Work. We defined our problem statement
for rough sketch cleanup (Section 3) narrowly with the hope that
multiple ground truth cleanings by professional artists would agree
(low ambiguity) and that a similar result could be achieved algo-
rithmically in the future. An alternative problem statement could
define the next “iteration” of the artwork, such as inking [Simo-Serra
et al. 2018b]. Our dataset does not consider this more ambiguous

problem statement. For two of our rough sketches, we have the orig-
inal artist’s own refinement. Figure 16 compares our professionally
cleaned sketches to the original artist’s own refinement.

In the future, we would like to explore end-to-end evaluations on
specific downstream sketch processing tasks like 3D reconstruction
[Xu et al. 2014] or animation in-betweening [Whited et al. 2010;
Yang et al. 2018]. We would also like to resolve imperfections in
human-created ground truth related to junctions and stroke thick-
ness and color. Imperfect junctions could possibly be resolved with a
semi-automated snapping routine and a non-standard data structure
capable of representing n-way junctions and curves which termi-
nate in the middle of others [Dalstein et al. 2014]. Stroke thickness
and color could be estimated from the underlying raster image;
again, semi-automation and a non-standard data structure would
be needed.

ACKNOWLEDGMENTS
We are grateful to all the artists who generously contributed their
rough sketches to our dataset. We acknowledge the artists whose
hard work created the ground truth data: Branislav Mirkovic, Santi-
ago Rial, Diego Barrionuevo, Ge Jin, Jonathan Velasco, Liliya Larsen,
and Maria Fiddler. The authors who shared their implementations
with us deserve special mention for furthering science: Bessmeltsev
and Solomon [2019]; Favreau et al. [2016]; Liu et al. [2018]; Noris
et al. [2013]; Parakkat et al. [2018]; Simo-Serra et al. [2018a,b]. Many
fruitful discussions with colleagues improved this work. We thank
Adrien Bousseau for helpful discussions on dataset creation and
Eli Schechtman for suggesting the Chamfer metric. We are grateful
to Jixuan Zhi, Rawan Alghofaili, and the GMU ARGO cluster for
lending us computing resources. Finally, we thank the anonymous
reviewers for taking the time to read our paper and provide feed-
back. Their comments and suggestions ultimately led to a better
paper for everyone.
Authors Yan and Gingold were supported by the United States

National Science Foundation (IIS-1453018), a Google research award,

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

https://morevnaproject.org/category/artists/anastasia-majzhegisheva/
https://www.flickr.com/photos/phploveme/

163:14 • Chuan Yan, David Vanderhaeghe, and Yotam Gingold

and a gift from Adobe Systems Inc.. Author Gingold is grateful to
Adobe for supporting him during his sabbatical, during which much
of the work was carried out. Author Vanderhaeghe was funded by
“Investissements d’Avenir” Labex CIMI (ANR-11-LABEX-0040) and
project Structures (ANR-19-CE38-0009-01).

REFERENCES
Alexis Andre and Suguru Saito. 2011. Single-view sketch based modeling. In Proceed-

ings of Sketch-Based Interfaces and Modeling (SBIM). Association for Computing
Machinery, Vancouver, British Columbia, Canada, 133–140. https://doi.org/10.1145/
2021164.2021189

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: As-natural-
as-possible sketching system for creating 3D curve models. In Proceedings of ACM
UIST. 151–160. https://doi.org/10.1145/1449715.1449740

Pascal Barla, Joëlle Thollot, and François X. Sillion. 2005. Geometric Clustering for
Line Drawing Simplification. In Proceedings of the Eurographics Symposium on
Rendering (EGSR), Oliver Deussen, Alexander Keller, Kavita Bala, Philip Dutré,
Dieter W. Fellner, and Stephen N. Spencer (Eds.). Konstanz, Germany, 183–192.
https://hal.inria.fr/inria-00362893

Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh. 2015.
Modeling Character Canvases from Cartoon Drawings. ACM Trans. Graph. 34, 5,
Article 162 (Nov. 2015), 16 pages. https://doi.org/10.1145/2801134

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of Line Drawings via
Polyvector Fields. ACM Transactions on Graphics 38, 1 (Jan. 2019), 1–12. https:
//doi.org/10.1145/3202661

Gwern Branwen. 2019. Danbooru2019: A Large-Scale Crowdsourced and Tagged Anime
Illustration Dataset. https://www.gwern.net/Danbooru2019. Accessed: 2020-01-15.

Boris Dalstein, Rémi Ronfard, and Michiel van de Panne. 2014. Vector Graphics Com-
plexes. ACM Transactions on Graphics 33, 4 (July 2014).

Luca Donati, Simone Cesano, and Andrea Prati. 2019. A complete hand-drawn sketch
vectorization framework. Multimedia Tools and Applications 78, 14 (July 2019),
19083–19113. https://doi.org/10.1007/s11042-019-7311-3

Mathias Eitz, James Hays, and Marc Alexa. 2012. How do humans sketch objects? ACM
Trans. Graph. 31, 4, Article 44 (July 2012), 10 pages. https://doi.org/10.1145/2185520.
2185540

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
simplicity: a global approach to line drawing vectorization. ACM Transactions on
Graphics 35, 4 (July 2016), 1–10. https://doi.org/10.1145/2897824.2925946

Jakub Fišer, Paul Asente, Stephen Schiller, and Daniel Sýkora. 2016. Advanced Drawing
Beautification with ShipShape. Computers & Graphics 56 (2016), 46–58.

Sarah Frisken. 2008. Efficient curve fitting. Journal of Graphics Tools 13, 2 (2008), 37–54.
Cindy Grimm and Pushkar Joshi. 2012. Just DrawIt: A 3D Sketching System. In Pro-

ceedings of the International Symposium on Sketch-Based Interfaces and Modeling
(Annecy, France) (SBIM ’12). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 121–130. http://dl.acm.org/citation.cfm?id=2331067.2331084

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Frédo Durand,
and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Transactions on Graphics (SIGGRAPH Asia Conference Pro-
ceedings) 38, 6 (Nov. 2019). http://www-sop.inria.fr/reves/Basilic/2019/GSHPDB19

David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Drawings. In
ICLR 2018. https://openreview.net/pdf?id=Hy6GHpkCW

Takeo Igarashi, Sachiko Kawachiya, Hidehiko Tanaka, and Satoshi Matsuoka. 1998.
Pegasus: A drawing system for rapid geometric design. In Proceedings of ACM
SIGCHI (Los Angeles, California, United States). 24–25. https://doi.org/10.1145/
286498.286511

Matthew Kaplan and Elaine Cohen. 2006. Producing models from drawings of curved
surfaces. In Proceedings of Sketch-Based Interfaces and Modeling (SBIM). Eurographics
Association, Vienna, Austria, 51–59.

Byungsoo Kim, Oliver Wang, A. Cengiz Öztireli, and Markus Gross. 2018. Semantic
Segmentation for Line Drawing Vectorization Using Neural Networks. Computer
Graphics Forum 37, 2 (2018), 329–338. https://doi.org/10.1111/cgf.13365

Andrew Kriebel. 2017. How Creating a Design Funnel Can Lead to Better Design
Decisions. https://mindtribe.com/2017/11/varying-the-design-space/

James A. Landay and Brad A. Myers. 1995. Interactive Sketching for the Early Stages of
User Interface Design. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-Wesley
Publishing Co., USA, 43–50. https://doi.org/10.1145/223904.223910

Hod Lipson and Moshe Shpitalni. 1996. Optimization-based reconstruction of a 3D
object from a single freehand line drawing. Computer-Aided Design 28, 8 (1996),
651–663. https://doi.org/10.1016/0010-4485(95)00081-X

Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: consolidating
raw sketches into artist-intended curve drawings. ACM Transactions on Graphics
37, 4 (July 2018), 1–15. https://doi.org/10.1145/3197517.3201314

Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2015. Closure-aware sketch
simplification. ACM Transactions on Graphics 34, 6 (Oct. 2015), 1–10. https://doi.
org/10.1145/2816795.2818067

Yue Liu, Xuemei Li, Pengbo Bo, and Xifeng Gao. 2019. Sketch simplification guided by
complex agglomeration. Science China Information Sciences 62, 5 (April 2019), 52105.
https://doi.org/10.1007/s11432-018-9694-8

Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Ya-
masaki, and Kiyoharu Aizawa. 2017. Sketch-based manga retrieval using Manga109
dataset. Multimedia Tools and Applications 76, 20 (2017), 21811–21838.

Damien Newman. 2002. The Process of Design Squiggle. https://thedesignsquiggle.
com/

Gioacchino Noris, Alexander Hornung, Robert W. Sumner, Maryann Simmons, and
Markus Gross. 2013. Topology-driven vectorization of clean line drawings. ACM
Transactions on Graphics 32, 1 (Jan. 2013), 1–11. https://doi.org/10.1145/2421636.
2421640

Toru Ogawa, Yusuke Matsui, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2016. Sketch
simplification by classifying strokes. In 2016 23rd International Conference on Pattern
Recognition (ICPR). 1065–1070. https://doi.org/10.1109/ICPR.2016.7899777 ISSN:
null.

Günay Orbay and Levent Burak Kara. 2011. Beautification of Design Sketches Using
Trainable Stroke Clustering and Curve Fitting. IEEE Transactions on Visualization
and Computer Graphics 17, 5 (May 2011), 694–708. https://doi.org/10.1109/TVCG.
2010.105

Amal Dev Parakkat, Uday Bondi Pundarikaksha, and Ramanathan Muthuganapathy.
2018. A Delaunay triangulation based approach for cleaning rough sketches. Com-
puters & Graphics 74 (Aug. 2018), 171–181. https://doi.org/10.1016/j.cag.2018.05.011

Theo Pavlidis and Christopher J. Van Wyk. 1985. An Automatic Beautifier for Drawings
and Illustrations. In Proceedings of the 12th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’85). Association for Computing Machinery,
New York, NY, USA, 225–234. https://doi.org/10.1145/325334.325240

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The Sketchy
Database: Learning to Retrieve Badly Drawn Bunnies. ACM Transactions on Graphics
(proceedings of SIGGRAPH) (2016).

Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2012. CrossShade: shading
concept sketches using cross-section curves. ACM Trans. Graph. 31, 4, Article 45
(July 2012), 11 pages. https://doi.org/10.1145/2185520.2185541

Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and Niloy J. Mitra. 2013.
Interpreting Concept Sketches. ACM Transactions on Graphics 32, 4 (2013), 10.

Amit Shesh and Baoquan Chen. 2008. Efficient and Dynamic Simplification of Line
Drawings. Computer Graphics Forum 27, 2 (2008), 537–545. https://doi.org/10.1111/
j.1467-8659.2008.01151.x

Alex Shtof, Alexander Agathos, Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or.
2013. Geosemantic Snapping for Sketch-Based Modeling. Computer Graphics Forum
32, 2 (2013), 245–253. http://dx.doi.org/10.1111/cgf.12044

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018a. Mastering Sketching:
Adversarial Augmentation for Structured Prediction. ACM Transactions on Graphics
37, 1 (Jan. 2018), 1–13. https://doi.org/10.1145/3132703

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018b. Real-Time Data-Driven
Interactive Rough Sketch Inking. ACM Transactions on Graphics (SIGGRAPH) 37, 4
(2018).

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learn-
ing to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup. ACM
Transactions on Graphics (SIGGRAPH) 35, 4 (2016).

Ivan Edward Sutherland. 1963. Sketchpad: A man-machine graphical communication
system. Ph.D. Dissertation. Massachusetts Institute of Technology.

Brian Whited, Gioacchino Noris, Maryann Simmons, Robert W. Sumner, Markus Gross,
and Jarek Rossignac. 2010. BetweenIT: An Interactive Tool for Tight Inbetweening.
Computer Graphics Forum 29, 2 (2010), 605–614. https://doi.org/10.1111/j.1467-
8659.2009.01630.x

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and
Karan Singh. 2014. True2Form: 3D Curve Networks from 2D Sketches via Se-
lective Regularization. ACM Trans. Graph. 33, 4, Article 131 (July 2014), 13 pages.
https://doi.org/10.1145/2601097.2601128

Xuemiao Xu, Minshan Xie, Peiqi Miao, Wei Qu, Wenpeng Xiao, Huaidong Zhang,
Xueting Liu, and Tien-Tsin Wong. 2019. Perceptual-aware Sketch Simplification
Based on Integrated VGG Layers. IEEE Transactions on Visualization and Computer
Graphics (2019). https://doi.org/10.1109/TVCG.2019.2930512 Conference Name:
IEEE Transactions on Visualization and Computer Graphics.

Wenwu Yang, Hock-Soon Seah, Quan Chen, Hong-Ze Liew, and Daniel Sýkora. 2018.
FTP-SC: Fuzzy Topology Preserving Stroke Correspondence. Computer Graphics
Forum 37, 8 (2018), 125–135. https://doi.org/10.1111/cgf.13518

Youyi Zheng, Han Liu, Julie Dorsey, and Niloy J. Mitra. 2016. SmartCanvas: Context-
inferred Interpretation of Sketches for Preparatory Design Studies. Computer Graph-
ics Forum 35, 2 (May 2016), 37–48.

ACM Trans. Graph., Vol. 39, No. 6, Article 163. Publication date: December 2020.

https://doi.org/10.1145/2021164.2021189
https://doi.org/10.1145/2021164.2021189
https://doi.org/10.1145/1449715.1449740
https://hal.inria.fr/inria-00362893
https://doi.org/10.1145/2801134
https://doi.org/10.1145/3202661
https://doi.org/10.1145/3202661
https://www.gwern.net/Danbooru2019
https://doi.org/10.1007/s11042-019-7311-3
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1145/2897824.2925946
http://dl.acm.org/citation.cfm?id=2331067.2331084
http://www-sop.inria.fr/reves/Basilic/2019/GSHPDB19
https://openreview.net/pdf?id=Hy6GHpkCW
https://doi.org/10.1145/286498.286511
https://doi.org/10.1145/286498.286511
https://doi.org/10.1111/cgf.13365
https://mindtribe.com/2017/11/varying-the-design-space/
https://doi.org/10.1145/223904.223910
https://doi.org/10.1016/0010-4485(95)00081-X
https://doi.org/10.1145/3197517.3201314
https://doi.org/10.1145/2816795.2818067
https://doi.org/10.1145/2816795.2818067
https://doi.org/10.1007/s11432-018-9694-8
https://thedesignsquiggle.com/
https://thedesignsquiggle.com/
https://doi.org/10.1145/2421636.2421640
https://doi.org/10.1145/2421636.2421640
https://doi.org/10.1109/ICPR.2016.7899777
https://doi.org/10.1109/TVCG.2010.105
https://doi.org/10.1109/TVCG.2010.105
https://doi.org/10.1016/j.cag.2018.05.011
https://doi.org/10.1145/325334.325240
https://doi.org/10.1145/2185520.2185541
https://doi.org/10.1111/j.1467-8659.2008.01151.x
https://doi.org/10.1111/j.1467-8659.2008.01151.x
http://dx.doi.org/10.1111/cgf.12044
https://doi.org/10.1145/3132703
https://doi.org/10.1111/j.1467-8659.2009.01630.x
https://doi.org/10.1111/j.1467-8659.2009.01630.x
https://doi.org/10.1145/2601097.2601128
https://doi.org/10.1109/TVCG.2019.2930512
https://doi.org/10.1111/cgf.13518

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Characteristics of sketches in the wild
	3.2 Problem Statement

	4 Dataset
	4.1 Sketch Collection
	4.2 Ground Truth

	5 Evaluation
	5.1 Sketch-to-Sketch Similarity
	5.2 How well do algorithmically cleaned rough sketches match ground truth?
	5.3 Vector Path Quality
	5.4 Timing and Failure Rate
	5.5 Ambiguity and Messiness
	5.6 Perceptual Study

	6 Conclusion
	Acknowledgments
	References

